Triple Systems Not Containing a Fano Configuration

نویسندگان

  • Zoltán Füredi
  • Miklós Simonovits
چکیده

Given a 3-uniform hypergraph F , let ex3(n,F) denote the maximum possible size of a 3-uniform hypergraph of order n that does not contain any subhypergraph isomorphic to F . Our terminology follows that of [16] and [10], which are comprehensive survey articles of Turán-type extremal graph and hypergraph problems, respectively. Also see the monograph of Bollobás [2]. There is an extensive literature on Extremal Graph Problems. Nevertheless, we know much less about the hypergraph extremal problems and we have even fewer exact results on hypergraphs. One of the main contributions of this paper is that we improve an earlier result of de Caen and Füredi [5], providing the exact solution of the Fano hypergraph extremal problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost all cancellative triple systems are tripartite

A triple system is cancellative if no three of its distinct edges satisfy A ∪ B = A ∪ C. It is tripartite if it has a vertex partition into three parts such that every edge has exactly one point in each part. It is easy to see that every tripartite triple system is cancellative. We prove that almost all cancellative triple systems with vertex set [n] are tripartite. This sharpens a theorem of N...

متن کامل

The Turán problem for projective geometries

We consider the following Turán problem. How many edges can there be in a (q + 1)-uniform hypergraph on n vertices that does not contain a copy of the projective geometry PGm(q)? The case q = m = 2 (the Fano plane) was recently solved independently and simultaneously by Keevash and Sudakov (The Turán number of the Fano plane, Combinatorica, to appear) and Füredi and Simonovits (Triple systems n...

متن کامل

Almost all hypergraphs without Fano planes are bipartite

The hypergraph of the Fano plane is the unique 3-uniform hypergraph with 7 triples on 7 vertices in which every pair of vertices is contained in a unique triple. This hypergraph is not 2-colorable, but becomes so on deleting any hyperedge from it. We show that taking uniformly at random a labeled 3-uniform hypergraph H on n vertices not containing the hypergraph of the Fano plane, H turns out t...

متن کامل

Combinatorial Intricacies of Labeled Fano Planes

Given a seven-element set X = {1, 2, 3, 4, 5, 6, 7}, there are 30 ways to define a Fano plane on it. Let us call a line of such a Fano plane—that is to say an unordered triple from X—ordinary or defective, according to whether the sum of two smaller integers from the triple is or is not equal to the remaining one, respectively. A point of the labeled Fano plane is said to be of the order s, 0 ≤...

متن کامل

Se p 20 08 Pythagorean Partition - Regularity and Ordered Triple Systems with the Sum Property Joshua Cooper

Is it possible to color the naturals with finitely many colors so that no Pythagorean triple is monochromatic? This question is even open for two colors. A natural strategy is to show that some small nonbipartite triple systems cannot be realized as a family of Pythagorean triples. It suffices to consider partial triple systems (PTS’s), and it is therefore natural to consider the Fano plane, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2005